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Abstract

An extension of a recently-developed linear thermoelastic theory for multiphase periodic materials

is presented which admits inelastic behavior of the constituent phases. The extended theory is capable

of accurately estimating both the effective inelastic response of a periodic multiphase composite and
the local stress and strain fields in the individual phases. The model is presently limited to materials

characterized by constituent phases that are continuous in one direction, but arbitrarily distributed within

the repeating unit cell which characterizes the material's periodic microstructure. The model's analytical
framework is based on the homogenization technique for periodic media, but the method of solution for

the local displacement and stress fields borrows concepts previously employed by the authors in con-
structing the higher-order theory for functionally graded materials, in contrast with the standard finite-

element solution method typically used in conjunction with the homogenization technique. The present

approach produces a closed-form macroscopic constitutive equation for a periodic multiphase material

valid for both uniaxial and multiaxial loading. The model's predictive accuracy in generating both the
effective inelastic stress-strain response and the local stress and inelastic strain fields is demonstrated

by comparison with the results of an analytical inelastic solution for the axisymmetric and axial shear
response of a unidirectional composite based on the concentric cylinder model, and with finite-element
results for transverse loading.

1 Introduction

Micromechanical modeling of multiphase materials with inelastic phases continues to be a challenging

problem due to the path-dependence of the local field variables which govern the overall or macroscopic

behavior of the material. The relationship between the local and global variables through the use of Hill's

strain or stress concentration tensors, Hill (1963), which define the instantaneous macroscopic response,

must be established at each instant along the loading path. This is in contrast with the elastic problem which

requires determination of Hill's concentration tensors just once.
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Many different approaches with varying degrees of complexity and limitations have been proposed for
modeling the inelastic response ofmultiphase materials, cf. Dvorak (2000) for a recent review article. Mod-

els for which exact analytical inelastic solutions of the governing field equations are available are limited to

the concentric cylinder geometry under axisymmetric or axial shear (but not transverse) loading, Pindera et

al. (1993) and Williams and Pindera (1997). Finite-element analyses of repeating unit cells representative

of materials with periodic microstructures produce very accurate estimates of the local field variables, albeit

at a substantial computational cost. The construction of inelastic macroscopic constitutive equations for

arbitrary loading based on such analyses is not straightforward, making it difficult to embed finite-element

based models into more general structural analysis procedures. This has given rise to the development of
approximate models which employ simplifying assumptions on the form of displacement or stress fields

within the individual phases. The effect of the inelastic response of the matrix phase is often accounted for

through the average values of the inelastic strain field either in the entire matrix phase or in the subvolumes
into which the matrix phase is partitioned.

A number of approximate analyses of a repeating unit cell, which employ subvolume discretization of

the unit cell to mimic the material's microstructure, has been developed to deal with the inelastic response

of periodic multiphase materials. The Generalized Method of Cells, Paley and Aboudi (1992), employs

a first-order representation of the displacement field in each subcell of the repeating unit cell, producing

piece-wise uniform strain and stress fields throughout the cell. The method is a generalization of the

original Method of Cells developed by Aboudi (1982) which is based on a limited cell discretization. In the

context of unidirectional composites, the generalized version allows accurate and efficient analysis of the
impact of fiber shape and arrangement on the composite's inelastic macroscopic response, as demonstrated

by Arnold et al. (1996). The predictive capability of the method in various applications has been recently

summarized by Aboudi (1996). However, despite the method's demonstrated accuracy in modeling the
inelastic macroscopic response of periodic composites, the accuracy with which local stress and strain fields

are captured (although acceptable in many applications) is not as good. This, for instance, requires the
incorporation of additional assumptions and modifications into the model's framework in order to trace

the evolution of damage at the local level due, for instance, to fiber breakage and fiber/matrix debonding,
Bednarcyk and Arnold (2001 a,b) and Pahr and Arnold (2001).

The assumption of piece-wise uniform strain fields has also been employed by Dvorak (1992) in the

context of a procedure called the Transformation Field Analysis. This approach has recently been gener-

alized by Chaboche et al. (2001) and demonstrated to capture the local stress and (inelastic) strain fields

with good accuracy in comparison to filfite-element simulations. Methods which employ more accurate field

representations within the repeating unit cell of a periodic composite, albeit at a significantly enhanced com-

putational cost, have been developed by Walker et al. (1994) and Fotiu and Nemat-Nasser (1996). These

are based on Fourier series approximations of the stress and strain fields within the repeating unit cell. In

practice, the solution of the local field quantities is obtained by discretizing the cell into square or triangular
subvolumes in which the eigenstrains are assumed to be uniform.

Most recently, a new method for the analysis of the thermoelastic response of multiphase periodic mate-

rials, characterized by repeating unit cells with arbitrary microstructures in the plane normal to the direction

of the continuous reinforcement (admiRing fully anisotropic behavior in this plane), was developed in which

the displacemem field within each subvolume of the repeating unit cell was approximated by quadratic func-

tions expressed in local coordinates, Aboudi et al. (2001). This, in turn, produces linear strain and stress

fields at the local subvolume level, in contrast with the piece-wise uniform fields employed in the Gener-

alized Method of Cells and Transformation Field Analysis. The method's analytical framework is based on

the homogenization technique (cf. Sanchez-Palencia, 1980; Suquet, 1987; Parton and Kudryavtsev, 1993;

Kalamkarov and Kolpakov, 1997), but the solution procedure for the local displacement, strain and stress

fields within each subvolume of the repeating unit cell borrows concepts previously employed by the au-

thors in constructing the higher-order theory for functionally graded materials, Aboudi et al. (1999). The
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higher-ordersubvolumedisplacementrepresentationrelativeto thatemployedin theGeneralizedMethod
of Cellsprovidesthenecessaryshear-couplingbetweenthelocalnormalandsheardeformationfieldsand
themacroscopicallyappliedaveragestrains.Thisfeature,in turn,producesexcellentestimatesof boththe
effectivethermoelasticmoduliof periodiccompositesandthelocalstressandstrainfieldsin theindividual
constituents,asdemonstratedinAboudiet al. (2001) through comparison with the finite-element results of

Sun and Vaidya (1996) for the effective moduli and an analytical solution for the local stress fields. There-

fore, in view of the above features and the same volume discretization methodology as that employed in the

Generalized Method of Cells, we refer to this new method as High-Fidelity Generalized Method of Cells or
HFGMC.

Herein, an extension of this method is presented which accounts for the inelastic behavior of the in-

dividual phases. The method's fully analytical nature results in a closed-form expression for the effective

response of a periodic multiphase material under multiaxial loading given in the form of a macroscopic
thermoinelastic stress-strain relationship, which can easily be incorporated into a structural analysis code as

a subroutine. The ease of the repeating unit cell's construction and the demonstrated accuracy of the theory

in predicting the average and the local stress and plastic strain fields, facilitates quick, efficient and reliable

analysis of the impact of a multiphase material's microstrucmre on the average and local response. The the-

ory's accuracy is validated based on comparison with the analytical concentric cylinder model predictions

for axisymmetric and axial shear loading, and finite-element predictions for transverse loading. Further,

comparison with the predictions of the original Generalized Method of Cells is presented in order to illus-

trate the advantages derived from the new approach. This comparison also provides an explanation for the

good accuracy of the Generalized Method of Cells at the macroscopic level despite poor estimates of certain
stress components at the microscopic level.

2 Theoretical Framework

Consider a multiphase composite wherein the microstructure is periodically distributed in the plane z2 -

zz defined by the global coordinates (z2,zz), see Fig. 1 where the repeating unit cell used to construct

the periodic array is highlighted. In the framework of the homogenization method, the displacements are
asymptotically expanded as follows

ui(x, y) -- Uoi (x, y) 4- d_u,i(x, y) + 82 u2i(x, y) + ... (1)

where x -- (xl, x2, x3) are the macroscopic (global) coordinates, and y -- (Yl, Y2, Yz) are the microscopic

(local) coordinates that are defined with respect to the repeating unit cell. The material's periodicity imposes

the constraint uai(x, y) -- uai(x, y+npdp) on the different-order terms uod (a -- O, 1,2, ...) in Eq. (1),

where np are arbitrary integer numbers and the constant vectors dp characterize the material's periodicity.

In addition, the size of the unit cell is further assumed to be much smaller than the size of the body so

that the relation between the global and local systems is yi -- xi/5, where _ is a small scaling parameter

characterizing the size of the unit cell. This implies that a movement of order unity on the local scale
corresponds to a very small movement on the global scale.

Employing the following relation in evaluating the derivative of a field quantity:

O 0 l0

Ozc---_i-+ _ + _50_ti (2)
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Figure 1. A multiphase composite with a periodic microstructure in the x2 - x3 plane characterized by a
repeating unit cell (highlighted).

the strain components are determined from the displacement expansion (.1) in the following form

_5 - _-_(_) + _ (_, y) + o(_) (3)

where the average and fluctuating strains, e-_j(x) and _j (x, y), are given by global and local strain-displacement
relations as follows

1.0a_ 0aj ~ 1 05_ 055
e-/j(x) -- 2 (ff_zj + _z/)' eij(x, y) -- _ (_-_yj + ff_-y/) (4)

In the above equation, 7ii are displacement components in the homogenized region (at the continuum scale)

and hence are not functions of the local coordinates y, and uli -- 7_i are the fluctuating displacements. It
can be easily shown that

where Vy is the volume of the repeating unit cell. This follows directly from the periodicity of the fluctuating

strain, implying that the average of the fluctuating strain taken over the unit repeating cell vanishes.

Using Eq. (3), one can readily represent the displacements in the form

_(_, y) - _-_5_5+ _ + o(_:) (5)

where e-_jxj represents the contribution of the average (homogenized) strain to the total displacement field

and 5i represents the fluctuating displacement field. This representation will be employed in constructing

an approximate displacement field for the solution of the cell problem discussed in Section 2.2.

For given values of the average strains gij, the unknown fluctuating displacements are governed by the

equilibrium equations subject to periodic boundary conditions imposed on the displacement and traction
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componentsthatareprescribedattheboundariesof therepeatingunit cell. In additionto theseboundary
conditionsoneneedsto imposethecontinuityof displacementsandtractionsattheinternalinterfacesbe-
tweenthephasesthatfill therepeatingunitcell.The manner of solving the governing field equations for the

fluctuating displacements in the repeating unit cell based on the representation given by Eq. (5) is described
next.

2.1 Definition of the cell problem

We perfom the analysis on the repeating unit cell which occupies the region 0 _< Y2 _< H, 0 < Y3 _< L

specified in terms of the local coordinates (y2, Y3). The microstructure of the repeating unit cell in the Y2-y3

plane in the given region is discretized into Nq and N_ internal or generic cells. Figure 2(a) illustrates how

the repeating unit cell highlighted in Fig. 1 could be discretized. In addition, every generic cell consists

of four subcells designated by the pair (3,)_) where each index takes the value 1 or 2 which indicates the

relative position of the given subcell along the y2 and Y3 axis, respectively, see Fig. 2(b). The indices

q and r, whose ranges are q -- 1,2, ..., Nq and r -- 1,2, ...,N_, identify the generic cell in the Y2 - Y3

planeThed nensionsofthegene ccellalongthe and axesareh?, and l?, suchthat
Eq=l ( + ), L -- S'_'_N___1 + ). This manner of discretizing a periodic material's

microstructure has also been employed in constructing the original Generalized Method of Cells (Paley and
Aboudi, 1992). The construction of the higher-order theory for functionally graded materials, characterized

by spatially variable microstructures without a definable repeating unit cell, is also based on such volume
discretization (Aboudi et al. 1999).

Given an applied macroscopic loading specified by the average strains e--/a-, an approximate solution for

the displacement field within each (_3-_,)subcell of the NqN_ generic cells is constructed based on volumetric

averaging of the equilibrium equations together with the imposition of periodic boundary conditions, and

both the displacement and traction continuity conditions, in an average sense between the cells and subcells

used to characterize the material's micro structure. The equilibrium equations for the (b3"_)subcell occupying

the region [ ff(;_) I< h (q)/2, [_7(7) [_< l(_)/2 that the displacement field must satisfy are given by

2 (_) -q -(_)
0"2j q- u3o3j -- 0 j -- 1, 2, 3 (6)

where 02 -- 0/09 (z) and 03 -- 0/09 ('y). The subcell stress components are related to the subcell strains

through generalized Hooke's Law which includes spatially uniform thermal loading characterized by the
temperature deviation AT from a reference temperature and inelastic effects,

_r(;_'y)_ _(_'y), (_) ez(_) _ e_(;_)ij _ijm tern -- kZ ) (7)

where _(_)"-_ijm are the elements of the stiffness tensor of the (3")') subcell -(_), _kZ are the total strains, and z(_)"kl
T(_y)

Ck 1 are the inelastic and thermal strains in the subcell, with no summation implied by repeated Greek
letters in the above and henceforth. The inelastic strains are derived from the chosen inelastic constitutive

model. In this paper, we consider either elastic orthotropic materials (characterized by nine independent

(Z_) elements) or inelastic materials which are isotropic in both elastic and inelastic domains. Hence, Eq.kl

(7) reduces to (assuming incompressibility of the inelastic strains)

(r(Z_)i_-- _(;_)-_iyme(z_)m- 2# (z_)ez(;_)i_ -- 0"T(_"/)ij (8)

where #(_) is the elastic shear modulus of the material filling the given subcell (/37), and the term crT(_'_),
henceforth referred to as thermal stress, stands for the thermal contribution _J

_rT(_)_ ----F (_'y)_aAT (9)
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whereF}f"r)arethethermalstresscoefficients.Werelatethesubcelldisplacementfield,whichformsthe
basisfor thesolutionof theequlibriumequations,to thesubcellstressesthroughtheHooke'sLaw(7) in
conjunctionwiththesubcellstrain-displacementequations.TakingintoaccountEqs.(3)and(4),thetotal
strainsin thesubcell(/3"7)aregivenby

c_v) - 1 uy'r) u_'r).. -_-+_(o_ . +o5 - ) (lo)

where 01 - 0 and 02, 03 have been defined previously.

t Y2 ,, L :.

i! iii

.(a)

H

_ Y3

13=2, Y=l_i_:i_iiiiiiil'i'j'i:ii'j:X:i__[3=2, y=2
.t.'_" " _i_i_!s_.".._:_:_:_ ::_i{_i_i_::_i_."...."2_ |_iiiiiiii_!ii_iiiiiiii!iii!iiiiiiiiiiy3[iiiiiiiiiiii!iiii_

i :::,:,::::::,::,:,
6 (o 6(_)

generic cell (q,r)

(b)

Figure 2. (a) Volume discretization of the repeating unit cell employed in the present model, (b) genetic cell
within the repeating unit cell.

2.2 Method of solution for the cell problem

We begin the solution of the equilibrium equations by approximating the fluctuating displacements in each

subcell using a quadratic expansion in terms of local coordinates (_(_), _('r)) centered at the subcell's mid-

point. This is in sharp contrast with the original Generalized Method of Cells where the employed displace-
ment expansion was linear as a result of which the coupling between the local normal and shear effects was

NASA/TM_2002-211469 6



lost.A higher-orderrepresentationof thefluctuatingdisplacementfieldisnecessaryinorderto capturethe
localeffectscreatedbythefieldgradientsandthemicrostructureofthecomposite.Thiswasdemonstrated
withintheframeworkof theelasticversionoftheHigh-FidelityGeneralizedMethodof Cellsin thecontext
of theproblemofaninfiniteplatewithacircularinclusionsubjectedto afar-fielduniformstress(Aboudiet

al. 2001). Both qualitative and quantitative aspects of the local stress field within the inclusion and its vicin-

ity, as well as the asymptotic character of the stress field away from the inclusion, were captured with very

good accuracy upon comparison with the exact analytical solution. Such local effects cannot be captured by

the original Generalized Method of Cells due the first-order (linear) displacement representation within each

subcell (which produces piece-wise uniform strain and stress fields within the repeating unit cell), and the

imposition of traction continuity conditions at the subcell interfaces in an average sense. As a consequence,
tractions along each column of subcells spanning the representative volume element in the directions as-

sociated with the particular traction components are uniform, precluding the posssibility of modeling local

effects due to matrix-inclusion as well as adjacent inclusion interactions (Pindera and Bednarcyk, 1999).

This shortcoming has been eliminated by the present theory as previously demonstrated in the elastic case
and as will be demonstrated in the inelastic case considered in the current contribution.

Following the general displacement representation for periodic media given by Eq. (5), the subcell

displacement approximation in the High-Fidelity Generalized Method of Cells has the form (omitting the
cell label (q, r), see Fig. 2b),

- w(_'y) 9(_)t;v(_) 9_)t;v(._'Y)gUxJ + '" 1(00) + ""1(10) + ""l(0_)

1 h (q)2_ _____ t;tz(ZT) 1 /(r)2
+ 4 + - ---)" ,(o2) (11)

-- w(_/) 9(¢_)w(_?) 93(?)txr(Z_)_25xJ + "" 2(00) + ""2(lo) + "" :(o_)

1 h(q)2 _t/v(_?) 1 l(r)2 vV(_'y)
- _)" 2(o2) (12)

-- w(Z?) 9(z)w(z?) 9(?)w(Z_)U(3_) g3jXj a t- ,, 3(00) -t- "' 3(10) -t- "" 3(01)

1 if( h(q)2,_uz(Z_, ) + 1(3_(_)2_ l(_2 H/.(Z? )
(3_'_): 4 _"3(:o) _ 3 4 )'' _(o:) (]3)

+

where ,, _(oo) are the fluctuating volume-averaged displacements, and W.(,_'9, (i -- 1 2, 3) are the higher-

order terms. The number of these unknown microvariables that describe the fluctuating displacements in

the cell (q, r) is 60. These microvariables are determined by satisfying the equilibrium equations (6) in

a volumetric sense, the interracial continuity conditions (both displacements and tractions) on the faces
separating adjacent subcells and cells in an integral sense,

/-(lz) I(q'_),-(_) / (r(27) i(q,_) ,-(z)°2J i_(_)=h_/2aY3 -- 2j i=(_) _. /2aY392 '---r_2

-l,/u -l,/2

hz/_ hZ/_

f ,,.(m),(q,r) ,_(_)
f

_"aj I_(_)=h /2aY_i - j
--h¢_ //2 --h/_ /2

.(/32)i(q,r)
3j 1=(2) , '_Y2 )

_..(z
Y3 "----_2/2
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t,/2 Z,/2

/ ,.,.(1_)i(q+l r) '' /
, , dS_'Yj _r(2_) j(q,_) _(_)

"'2j ':(I)_ hl/2 g3 -- 2j ,._2)=h2/2aY3

_/2 _/2

/ -.(1_,) ,(q,r)'_._ '_') =h //2__) - --.(2_'),(q,,') _(z)
: v"i t-_(z)=--h2/2aY3

-_ 12 -_ 12

hz/2 hz/2

_ ; _Z2),(q,_) __(_)- t:_,)=h/2-_2 --., " 1:(2)=_1212aY_
-hz/2 -hz/2

_/2 _/2

':(2')=-h, /2ay3 - _ ':_=)=h=
-_/2 -z_/2

hz/= hz/_

_),(_,_+') _-(_)
f

- l_(,)=_z,/ay2- I _2)'(_'_) _-(_)- 1:_2)=z212aY_ (14)
J

-h_12 -_12

and the periodic boundary conditions at y2 -- 0, H and y3 -- 0, L expressed in the local subcell coordinates
for the appropriate subcells within the boundary generic cells

_/2 _/2

/ _(17) ,(1,r) __.(7) / _(27) i(N¢,r) ___(7)'-'2j I_O)=_ht/2aY3 -- "2j t_(_)=h2/2aY3
--_ /_ --_._/_

h_/2 h_/2

/ _r (_1)'(q,1) _-(_) / _r(_2),(q,N.) _--(_)v3j I:(_)=_z,/2aY2 -- 3j l:(2)=z=/2ay2
--hz//2 --h/_/2

_/2 _/2

t_0)=-ht I_(z )=h2 /2aY 3

-_/2 -_/2

_/2 hz/2

f _}z,),(q,_) _-(z). i:(,)=_z,12aY _ _ j" _}_2),(q,N_) d_ff(_)I:_=)_z2/2 Y2 (15)
-h_/2 --h_/2

where i, j -- 1,2, 3. These periodicity conditions ensure that the repeating unit cell is an intergral part of

the periodic array representing the emire multiphase material, thereby explicity accounting for the interac-

tion with the adjacent unit cells. As shown in the following development, application of these conditions
produces the correct number of equations for the determination of the unknown microvariables.

NASA/TM_2002-211469 8



In the perfectly elastic case, the above displacement expansions produce linear variations in strains and

stresses at each point within the subcell. In the presence of inelastic effects, however, a linear strain gener-
ated by these equations does not imply the linearity of the stress field due to the path-dependent deformation.

Thus the displacement field microvariables must depend implicitly on the inelastic strain distributions, giv-

ing rise to a higher-order stress field than the linear strain field generated from the assumed displacement

field representation. In the presence of inelastic effects, this higher-order stress field is represented by a

higher-order Legendre polynomial expansion in the local coordinates. Therefore, the strain field gener-

ated from the assumed displacement field, and the resulting stress field, must also be expressed in terms of
Legendre polynomials"

(16)

O0 O0

_cr}9"r) -- E E V/(1 + 2m)(1 + 2n)ria.(m,,_)p,_ )pn(((3"r)) (17)
m-----0 7z-----O

where the non-dimensional variables (}'), defined in the interval - 1 _< (}) < 1, are given in terms of the

local subcell coordinates as (_) -- zjiZ)/(h(q)/2), and ((33") -- zj(3?)/(l(r)/2). For the given displacement

field representation, the upper limits on the summations in Eq. (16) become 1. The upper limits on the

summations in Eq. (17) are chosen so that an accurate representation of the stress field (which depends on

the amount of the inelastic flow) is obtained within each subcell, Aboudi et al. (1999). The coefficients
e@'9 , r@'9

ij(m,,_) ij(m,,0 in the above expansions are determined as described below.

The strain coefficients e!.£"r) , in subcell (,37) of cell (q, r) are explicitly determined in terms of the

d!splacement field using the orthogonal properties of Legendre polynomials. The non-zero components are
given as follows (omitting (q, r))

(;_'r) -
ell(0,0 ) -- el 1

e=@'r) w(9"r)
2(0,0) -- _22 + ,, 2(lo)

2(_,o) = -_-th3 ,, 2(20)

e@'r) w@'r)
33(0,0) --g33+ ,, 3(oi)

33(o,,)- -_- "3(o2)

e2@.r) 1 w(_'r) w(5"r)
3(0,o)= e-=3+ _ (,, 2(0,) + ""3(,0))

e2(_) _ v/3 h(gq)w(_)3(,,o)- -T ""3(2o)

e2(;_'r) _ v'_/(,-)w(;_-r)
3(0,1) 4 3" "2(02)

e(_'r) I w(a'r)
13(0,0) = g,3 + _ .. ,(o,)

e(_'9 _ v/3/(_)w(5-r)
13(0,1) -- /4 3' '' 1(02) "

NASA/TM_2002-211469 9



e(_) 1 Hr(_z)
12(o,o) = g12 +_ ,, _(m)

,2(,,o) -T ",(2o) (18)

It should be noted that e(_Z)ia(0,0)provide the average strains in subcell (37) of cell (q, r).

The stress coefficients r!_]),3tin,n) in subcell (_3-y) of cell (q, r) are expressed in terms of the strain co-

efficients, thermal stress and the unknown inelastic strain distributions, by first substituting the Legendre

polynomial representations for the total strain and stress into the constitutive equations, Eq. (8), and then
utilizing the orthogonality of Legendre polynomials:

i5(m,,_) -- ijm "m(,_,,_) ia(m,,0 - ('ij omOO0,_

The T/(_)
ij(m,n) terms represent the inelastic stress distributions calculated in the following manner

(19)

-j( , ) = 5# (;_/) V/(2m + 1)(2n + 1) ez(_'Y)P m )p,, _dZ(_),4F(_)
1 1 ij / _2 "%3

(20)

Note that in both Eqs. (19) and (20) the cell labeling (q, r) has been omitted.

In the course of satisfying the equilibrium equations in a volumetric sense, it is convenient to define the
following stress quantities:

1 fh(zq'/2fC'/2 (21)
a-¢'/, a_,(:'/,

For m -- n -- 0, Eq. (21) provides the average stresses in the subcell, whereas for other values of (m, n)
higher-order stresses are obtained that are needed to describe the goveming field equations of the contin-

uum. These stress quantities can be evaluated explicitly in terms of the unknown coefficients W (;_) b_
i(--0

performingtherequiredvolume integrationupon substitutingEqs.(8),(I0)and (II)-(13)inEq. (2l).This

yieldsthefollowingnon-vanishingzeroth-orderand first-orderstresscomponents intermsoftheunknown

coefficients in the displacement field expansion (omitting (q, r)):

11(0,0)- "-_11 C'll "_''-_12 _,"2(10) + C'22)+ _13 ('" 3(01) "4" _'33)- /XT (22)_ "11 (0,0)

S(_) _ 1 _,(q)2_(_._)t/tz(_.y ) 1 h(q) t_(_)
(_,o) -- _'_ _,2 "" 2(20) - 2v/_ _ __,_(_,o) (23)

(_z) _ lz(r)2_(_-_)Ta/_(_Z) _ 1 l(_)i_(_)
_(0,_) -- 4°_ _a "3(o2) 2v/_ _(o,_) (24)

with similar expressions for the other normal stress components, and

$2(_) - _(_)(2_23 + H/-(_) _/-(_) _(_)- "_ ""2(0,) + "3(,0)) -3(0.0) (25), - '_23(0,0)

.y) _ 1 l_(q)2F,f(_,.y)i/TT(Z,,/) _ 1 h(q) T_(3.,/)

3(,,o) -- _'_ "-'44 ""3(20) 2v_ _ _'2a(,,o) (26)

(_.r) _ 1_(_)2_(_-r)_az(Z-r) _ 1 _(_)_v(_'r)
3(o,,) -- _°, "-'44 ""2(02) 2v/_°_ *_23(o,,) (27)

S(_Y) - _(_) t_t/-(_) t_(_)(2 ,3+
,3(o,o)--"_5 ,,_(o,)_- "_,3(o,o) (28)
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1
S(;_z) _ j(_)2,_(_)T;[r(_z) _. l(_)r_(_z)

1

13(0,1) -- _°z "_55 " 1(02) 2v/5 _ "_13(0,1)

S(_) - r_(_) w(_) _(_)(gz +
,2(o,o)-'_66 _-q2 ,,,(,o)J-_,2(o,o)

S(_?) 11,(q)2_(_?)vv(/_?) 1 h(q)_(_? )
12(1,o)- _'°z "_66 _ _(2o)- 2_/-_ -_2(_,o) (31)

where contracted notation has been employed for the stiffness elements _(;_?)"_jkl •
Subsequently, satisfaction of the zeroth, first, and second moments of the equilibrium equations (6) re-

sults in the following 12 relations among the the volume-averaged first-order stresses S/(/__j(,n) in the different
subcells (3")') of the (q, r) cell, after lengthy algebraic manipulations

(29)

(30)

[q(_'Y) /h_ + q(_) /l_](q,r) --0 j -- 1 2,3 (32)_'2j(_,o) _'3j(o,_)

The continuity of tractions at the subcell interfaces within each interior cell, and between adjacent cells,
imposed in an average sense, can be shown to reduce to the following relations which are obtained from the

first four equations of (14) after some algebraic manipulations,

1°,q(17) �hi .+.q(27) _t_q(2?) (q,r) r.¢(27) t_q(2?) //h2](q_l,r)__O[-'-_2_(_,o) _'2j(o,o) "_'2j(_,o)/h2] - + -- (33)L_'23(0,0) "_2_(_,0)

q(lz) I q,(23') __ 2q,(27) (q,r) 1 [q,(27) R q_(23') In2] (q-l'r) --0 (34)-_'_3(0,o) + __(0,o) v_(_,o)/h_] + _ _3(0,o) + _3(_,o)

[__,)¢(_) //l_+¢(_ 2) _6S(_ 2) /12](q, r) r¢(_ 2) 6S(;_2) /12](q,_-_)""_'3j(o,_) _'3j(o,o) 3j(o,_) - L_3j(0,0) + 3j(o,_) = 0 (35)

[_¢(_,) 1¢(_2) _ _q(_2) /12](q,r) 1 r¢(_2) 6S(;_2 ) /12](q,_._, )_'33(o,o) + _'3j(o,o) _'_'3a(o,_) + _ L_'aj(0,0)+ 3a(o,_) = 0 (36)

where j -- 1, 2, and 3. The details of derivation of equations similar to Eqs. (32)-(36) have been provided

by Aboudi et al. (1996) for a more general case of a microstructure containing periodic inclusions in the
out-of-plane direction.

Equations (33)-(36) provide 24 additional relations among the zeroth-order and first-order stresses.

These relations together with Eq. (32), can be expressed in terms of the unknown coefficients W (_?)
i(mn)

by making use of Eqs. (22)-(31), providing a total of 36 of the required 60 equations necessary for the
determination of these coefficients in the cell (q, r).

The additional 24 relations necessary to determine the unknown coefficients in the displacement field

expansion are subsequently obtained by imposing displacement continuity conditions on an average basis at

each subcell and cell interface. This produces, upon use of the last four equations of (14),

[v_z(_?) 1 1
""i(oo) + _h_ T/V(_?)"i(m) + _ h2_/_z([?) (q,r) _ ruz(2?) _ 1 1"/(20)] /_" I/T7(2"/) i_2 I/V(23') (q'r)t'" _(oo) _'_ "" _(m) + _'_z" _(2o)] (37)

[uz(2?) 1 i/V(2? ) 1/_2i/I/-(27) (q,_) ruz(_?) 1 v_;(_?) 1 _2u;4_)(q+_
,,_(oo) + 5h_ ,,_(_o) + _._,,_(_o)] - - h, + ] ,') (3S)

[u_(_) 1 1
_ i(oo) + _l_ uz(_) /21/lz(_l)l(q,r) __ rH/_(Z2) 1, _,_(_2) 1"" i(01) nt- 4 '' i(02)J _'" i(00) -- _2vVi(o1) -_" 412I/V(_2)l(q'r)'"i(02)_ (39)

(;_2) 212V[Z(_2) ll_u:(_2)](q,r ) __ ruA_,) 1 uz(_,) 1 2uz(_[)](q,_+[)"' _(oo) + "'_(o_) + 4 '" _(o2)J t"_i(oo) -- _l_ ,, _(o_) + _l_ ,,i(o2)_ (40)

where i -- 1,2, and 3, which comprise the required additional 24 relations.

The equilibrium relations, Eqs. (32), together with the traction and displacement continuity conditions

Eqs. (33)-(36) and (37)-(40), respectively, form 60 equations in the 60 unknowns I/V(_?)
i(mn) which govern the
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equilibrium of a subcell (3")') within an interior cell (q, r); q -- 2, ..., Nq - 1, r -- 2, ..., Nr - 1. For the

boundary cells q -- 1, Nq and r -- 1, Nr a different treatment must be applied.

For the boundary cell (1, r), the above relations are operative, except Eqs. (33) and (34), which follow

from the continuity of tractions between a given cell and the preceding one (since cell (0, r) does not exist).
These 12 equations must be replaced by the conditions of continuity of tractions at the interior interfaces

within cell (1, r) (imposed in the average sense), and by the conditions that the fluctuating displacements
are periodic. It follows, by employing the third set of relations in (15), that

[T/v(ln) 1 1
"" i(00) _hl w(ln) w(ln) (1,_) rHA2n) 1 l, ,,_(27) 1

"/(20) t_ i(00) 2'_2 vvi(10) 4 "' i(20)J (41)

where i -- 1,2, and 3. Both conditions provide the required 12 relations to be used for cell (1, r).

For the boundary cell (Nq, r), the previously derived governing equations are operative except for the

6 relations given by Eqs. (38), which are obviously not applicable (since cell (Nq + 1, r) does not exist).

These are replaced by the conditions that the tractions are periodic. Thus the first set of relations in (15),

reproduced below for convenience, provides the 6 equations to be used for cell (Nq, r)

1._/2 _/2

/ _(,n),(1,r) /2d-_(n)_ / ,,.(2?),(Nq,r) _,_(?) (42)_'23 ,_O)=_ht "25 ,_(2)=h2/2aY3
--17/2 --17/2

where the stresses _r_ ?) are given by Eq. (8).

Similar treatments hold for boundary cells (q, 1) and (q, Nr). Thus the 12 equations (35)-(36) are

obviously not applicable in cell (q, 1) and should be replaced by the conditions of continuity of tractions

at the interior interfaces within this cell (imposed in the average sense), and by the conditions that the

fluctuating displacements are periodic. The latter yield according to the fourth set of relations in (15)

[Txr(_l) 1
vv i(00) -- _ll 1/1/-(/31)_ + i 121ffT(/31)](q,1) _ [1/1/_(82) 1i(01) _ 1 _ i(02)J L_ i(00) + _/2Hr(/32)

1
12W(132)

"i(0t) +_ 2 i(02)] (43)
(q,N,-)

For the boundary cell (q, Nr), Eqs. (40) are not operative and they should be replaced by the periodicity of

tractions which is given by the second set of relations in (15), reproduced below for convenience,

h_/: h_/2

/ "3l'l(q'" /2d-Y(_,- / "(32'i(q'N"'/2d-Y(_' (44,v3J I_(l)=_/l _3j I_i2) =/2

-h_/2 -a_/2

Consequently, the governing equations for the interior and boundary cells form a system of 60NqNr
algebraic equations in the unknown coefficients W (¢_?)i(mn)" The final form of this system of equations can be
symbolically represented by

KU -- f + g (45)

where the structural stiffness matrix K contains information on the geometry and thermomechanical prop-

erties of the materials within the individual subcells (37) of the cells comprising the multiphase periodic

composite. The displacement vector U contains the unknown displacement coefficients in each subcell, i.e.,

U --[U_', '), ..., U(N_q) ] (46)

where in subcell (37) of cell (q, r) these coefficients are

U(Zn) --[W_(0o) W_( , , ,qr , to) W/(0t) Wi(20) W/(02)](_r?) i -- 1,2, 3
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Themechanicalforcevectorf containsinformationontheappliedaveragestrainse-/jandtheimposedtem-
peraturedeviationAT, and the inelastic force vector g appearing on the fight-hand side of Eq. (45) contains

the inelastic effects given in terms of the integrals of the inelastic stress distributions that are represented by
the coefficients/_(;3_)

ij(m,,q" These integrals depend implicitly on the elements of the displacement coefficient

vector U, requiting an incremental procedure for the solution of Eq. (45) at each point along the loading
path.

A careful check of the preceding equations reveals that the equations that govern the local normal and

in-plane (2-3) shear deformations are coupled, thus providing the necessary shear coupling effects. On

the other hand, these equations are not coupled to the axial shear deformations (1-2 and 1-3). Thus the
above system, Eq. (45), can be decoupled in practical applications and solved for the normal and transverse

shear deformations (with 40NqNr algebraic equations) separately from the axial shear deformations (with
'20NqN,. algebraic equations).

2.3 Global constitutive relations

Once the solution U for a given set of average strains _ has been established, we can determine, in particular,

(;_'Y)'(q'_) in subcell (37) of the cell (q, r) given by (18). The average stress componentsthe average strains Le(0,0)j
[.¢(,_) 1(q.r)
_'ij(o,0)J ' in subcell (3")') of the cell (q, r) are given by Eqs. (22), (25), (28) and (30). They can be

assembled in a compact form as follows

[s(;_'Y)mo)'-,-.](q'_) - [C(9"y),_(;_'Y)_ r_ (_'y) _ F(;_-Y)AT] (q,_)"(o,o) -_(o,o) (47)

The equation relating the average total, plastic and thermal subcell strains, and macroscopically applied

strains is obtained by generalizing the localization relation given in Aboudi et al. (2001) for elastic phases
in the following manner

[e(/_'Y)(q,r) [A(8-y)_ (_-/) (q,r)(0,0)] -- + D ] (48)

where [A(_'y)](q,.) is the mechanical strain concentration matrix of the subcell (3")'), and [D(;_'9](q, _) is a

vector that involves current thermo-inelastic effects in the subcell. In the absence of thermal and inelastic

effects this vector vanishes, and we can readily determine from (48) the mechanical strain concentration

matrix [A(;_'Y)](q,_) by solving the system (45) six consecutive times upon imposing a single non-zero com-
ponent of_ one at a time.

The thermo-inelastic analysis is performed in conjunction with an incremental procedure by imposing

a spatially uniform temperature AT and the applied macroscopic strain _ in a stepwise manner. Thus for a

(;_'Y)'(q'_) in the subcell obtainedgiven value of applied thermomechanical loading, the average strains [e(0,0)] are

from the solution of Eq. (45), and hence the matrix [D(i3"Y)](q'r) from (48) at the current loading level.
Substitution of (48) into (47) yields

[S(;_)(O.O)_](q'_) -- [C(Z_) (A(Z_)7 + D(Z_)) __ 1_(Z_) __ r(_)AT] (q,_)• -_(o,o)

The average stress in the multiphase periodic composite is determined from

(49)

1 Nq N,. 2 )l,_)h}__
(0,0)J (50)

q----1 r----1 /3,3,--1

Consequently, Eqs. (49)-(50) establish the effective constitutive law of the multiphase thermo-elastic
composite in the form

a - c* - (a + (51)
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whereC* is theeffectiveelasticstiffnessmatrixofthecompositewhichisgivenby

1 Nq N,- 2

q=l r=l _7=1

(52)

and _z and _T denote the overall (macroscopic) inelastic and thermal stresses in the composite whose sum
is given by

_I +_T__

_INqN, - 2

-_(o,o)
q=l r=l /3,.7=1

(53)

Owing to the implicit dependence of D(/_7) on the inelastic and thermal effects, the right hand side of

(53) involves the combined inelastic and thermal contributions. It is very convenient to utilize the result

obtained by Levin (1967) to separate the global inelastic and thermal effects. The global thermal stress in

the multiphase composite g.T _ r*ZXT ( r* is related to the effective coefficients of thermal expansion ¢x*
of the composite by r* - c*c_* ) is given in accordance with the Levin formula in terms of the mechanical

strain concentration matrices and the thermal stress vector in the individual phases by

_rT_ AT Nq IV_ 2

-- H£ Z Z _ 'i_(q)l(r)"_"7

q=l r=l _7=1

(54)

where [At_(/_'J](q, _) is the transpose of the mechanical strain concentration matrix [/k(/_'r)](q, _) of subcell

(_37) within cell (q, r). This provides an additional check on the consistency of the proposed approach.

Consequently, by utilizing Eq. (54) the overall inelastic stress of the composite can be readily obtained from
(53), so that it can be represented in a closed-form manner, namely,

bz_-I Nq Nr 2
----HLZZ Z _(q)'(r)[c(;_')D(zT) -"(;_7)'?°, + -

q=l r=l /3;7=1
(55)

We remark that, in the present framework, we have chosen to use the total formulation approximation
of the field quantities which, in tum, results in the total form of the effective stress-strain relations for the

multiphase material given by (51). The actual integration of the inelastic effects represented by the vector

[D(37)] (q'r) depends on the chosen inelastic constitutive model for the individual phases. In the present

paper, these effects are integrated using an iterative procedure within an incremental framework described

in the next section for the incremental plasticity theory representation of the inelastic phase response. In the

case of rate-dependent phase constitutive models, which the High-Fidelity Generalized Method of Cells'

framework can naturally accomodate, either an explicit or an implicit integration scheme may be employed.
This is in contrast with the approach employed by Paley and Aboudi (1992) where both total and rate

formulations were employed in approximating the subcell field quantities. Similarly, rate formulations were

employed by Fotiu and Nemat-Nasser (1996) and Walker et al. (1994). Chaboche et al. (2001) employed

both rate (or tangential) and secant formulations in their extension of the Transformation Field Analysis

which also included the presence of evolving damage modeled using the continuum damage mechanics

approach. The present theoretical framework can also be reformulated in terms of rates, however for stand-
alone applications there is no clear advantage of the total vs rate approach.
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3 Numerical Results and Discussion

The focus of the extended High-Fidelity Generalized Method of Cells' validation is both the accurate predic-

tion of the macroscopic inelastic response of a unidirectional metal matrix composite and the evolution of the

local stress and inelastic strain fields at different macroscopic loading levels. The multiple concentric cylin-

der model, briefly described in the Appendix for completeness, is employed to validate the High-Fidelity

Generalized Method of Cells' predictive capability under axisymmetric loading due to a spatially uniform

temperature change (Pindera et al., 1993), as well as under axial shear loading (Williams and Pindera 1997).
This model is chosen because it provides fully analytical solutions for the local stress and inelastic strain

fields, which satisfy the external boundary conditions together with the fiber/matrix interfacial displacement

and traction continuity conditions under such loading. Therefore, these solutions are exact and provide the

effective elastic and inelastic response of unidirectional composites with arbitrary fiber content. However,

because the solutions are based on a particular geometry and the concept of a representative volume element

which employs homogeneous boundary conditions to obtain solutions for the local fields, the functional

form of the local fields is not affected by the presence of adjacent fibers. At dilute fiber volume fractions,

the presence of adjacent fibers and the actual fiber array geometry has very littleeffect on both the local

field quantities and the macroscopic response, and therefore the High-Fidelity Generalized Method of Cells

which is based on periodicity (and the use of periodic rather than homogeneous boundary conditions) can

be compared directly with the multiple concentric cylinder model predictions. This does not limit the gener-
ality of the conclusions obtained from such comparison due to the pronounced stress concentrations around

the fiber/matrix interface, which give rise to the evolution of the local stress and inelastic strain fields whose

complexity depends on the loading type. For instance, under axisymmetric loading, the inelastic strain field

evolution depends only on the radial coordinate whereas under axial shear loading the angular dependence
is also present, producing stress and inelastic strain fields that are two-dimensional. It is both the charac-

ter and the magnitude of these local stress and inelastic strain fields for dilute fiber volume fractions that

must be reproduced by the High-Fidelity Generalized Method of Cells, upon comparison with the multiple

concentric cylinder model's predictions, that will validate the theory's predictive capability. Alternatively,
at non-dilute fiber volume fractions, the presence of adjacent fibers will affect the local stress and inelas-

tic strain fields. Therefore, the theory's predictions are expected to reflect this interaction relative to the

multiple concentric cylinder model which does not directly account for the adjacent fibers' presence. Since

the multiple concentric cylinder model cannot be used to generate a solution under transverse loading, the

finite-element method was employed for this loading type to validate the theory's predictive capability.

Table 1. Elastic and thermal parameters of the transversely isotropic graphite fiber.

/=_A(GPa) UA Ez, (GPa) uz, GA (GPa) c_A (10-6/°C) aT (10-6/°C)
388.20 0.41 7.60 0.45 14.90 -0.68 9.74

Table 2. Elastic, plastic and thermal parameters of the isotropic aluminum matrix.

E (GPa) u G (GPa) a (10-6/°C) _ru (MPa) Es (GPa)
72.40 0.33 27.22 22.5 286.67 11.70

A graphite/aluminum (gr/al) system is considered with the thermal, elastic and plastic moduli of the in-

dividual constituents given in Tables 1 and 2. The graphite fiber is linearly elastic and transversely isotropic,

and the isotropic aluminum matrix is modeled using the classical incremental plasticity theory with isotropic
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hardening.Forthis inelasticconstitutivemodel,Mendelson'smethodof successiveiterationsdescribed
brieflybelow,andindetailelsewhere(Mendelson,1986;WilliamsandPindera,1997),isemployedto solve

W(_)the system of equations (45) for the unknown coefficients i(--0 and the plastic strain distributions d'/(_v) in

the individual subcells. Towards this end, the plastic strain field in the (37) subcell at the current load level

is expressed in terms of the known initial distribution from the preceding loading state plus an increment
that results from the imposed load increment,

(56)

The plastic strain increments at the individual locations within the subcell are calculated using the Prandl-
/

Reuss flow rule expressed in terms of so-called modified total strain deviators co, rather than deviatoric
stresses, as follows (omitting the superscript (37) for notational clarity)

!

de_. -- _eij d-g-cp
eeff

(57)

' -- P ]previous i" ' 'where eij eij- 1/3ekk6ij -- eij -_ff ,, -- /3eijeij and the effective plastic strain increment
d_ is

d'_ -- "eef f -- e//3# (58)

where # is the shear modults.

Without loss of generality in validating the theory's predictive capability, we take the elastoplastic re-

sponse of the aluminum matrix to be bilinear, with the effective stress _(_v) given by

-_(_-P) -- o'_ + Hp_ (59)

where cru is the yield stress in simple tension, and Hp is the slope of the effective stress-plastic strain curve,

related to the secondary modulus E_ in the bilinear stress-strain representation of the elastoplastic response
(see Table 2) as follows

EE_
Hp -- E- E_ (60)

where E is the Young's modulus of the isotropic aluminum.

The above form of the incremental plasticity equations is completely equivalent to the classical one,

but has the added advantage of producing very quick convergence when used in conjunction with Mendel-

son's iterative scheme for the solution of Eq. (45), as demonstrated in our previous investigations. The

implementation of these equations is facilitated by the following loading condition for plastic loading

m

o"

1- >0 (61)
3 /xee f .f

shown previously to produce very fast convergence.

The fiber volume fractions (v f) of the gr/al composite employed in the validation studies are 0.05 and

0.25, respectively, which henceforth will be referred to as dilute and non-dilute fiber volume fractions.

Figure 3 shows the volume discretizations of the repeating unit cell for these two cases. In both cases, the

unit cells contain 36 × 36 subcells appropriately dimensioned to approximate the circular fiber shape with

sufficient accuracy. This was accomplished using a commercial optimization code.
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Figure 3. Volume discretization of the repeating unit cells employed in the analysis of unidirectional fiber-

reinforced, metal-matrix composites: (left) v$ - 0.05; (fight) v$ - 0.25.

3.1 Axisymmetric thermal loading

As the first step, we compare the predictions of the High-Fidelity Generalized Method of Cells and the

multiple concentric cylinder model for the thermal response of the gr/al unidirectional composite during

spatially uniform cooldown from 500 ° C to 25° C. This is the simplest case which results in axisymmetric

displacement, stress and (plastic) strain fields within the individual phases of the multiple concentric cylinder

model. As is well-known, the macroscopic axial response for this loading case can be predicted with good
accuracy by the simplest micromechanics models irrespective of the fiber volume fraction. Thus a true test

of the theory's predictive capability is the evolution of the plastic strain field in the aluminum phase as a

function of temperature, which should retain an axisymmetric character for the dilute (i.e., noninteracting)
fiber volume fraction composite. This is the focus of this section.

Figure 4 presents the macroscopic axial and transverse response of the gr/al unidirectional composite

with the two fiber volume fractions as a function of temperature generated by the two models, which pro-
vides information on the initiation of yielding in the aluminum phase. For the dilute fiber volume fraction

composite, Fig. 4(top), yielding initiates slightly above 300 ° C, while in the non-dilute case this occurs at

around 250 ° C, Fig. 4(bottom). In order to obtain initiation of yielding for the two cases at comparable

temperature levels when cooled from a common temperature, the yield stress of the aluminum phase in

the dilute fiber volume fraction composite was taken to be one fourth of the yield stress employed in the
non-dilute fiber volume fraction composite reported in Table 2.

As expected, both models predict vimually identical macroscopic thermal response in the axial direction

for the dilute and non-dilute fiber volume fraction cases. The same observation holds true for the effective

transverse response. Based on the macroscopic thermal response shown in Fig. 4(top), the effective plastic
strain distributions for the dilute fiber volume fraction composite have been generated at 300 ° , 200 ° and 25 °

C using the High-Fidelity Generalized Method of Cells and the multiple concentric cylinder model. The

effective plastic strain distributions are calculated by integrating the effective plastic strain increment d_ p at
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eachloadincrementalongtheentireloadinghistoryattheparticularpoint,i.e.,

whered_p is given by Eq. (58). These distributions are shown in Fig. 5. In this dilute fiber volume

fraction case, little interaction is expected between adjacent fibers in the periodic square fiber array model

employed in the High-Fidelity Generalized Method of Cells. Thus the character of the effective plastic strain

distribution in the aluminum phase predicted by this model should be essentially axisymmetric and therefore

comparable to that predicted by the multiple concentric cylinder model. This is indeed the case with respect

to both the distribution as well as the magnitude, as observed in Fig. 5. It is remarkable that the magnitude

of the effective plastic strain field is predicted with high accuracy by the High-Fidelity Generalized Method

of Cells even during the initial stages of yield initiation at 300 ° C shown in the top portion of Fig. 5. This
demonstrates that the method is sufficiently sensitive to capture accurately the plastic strain field even when
the effective plastic strain magnitudes are very small.

In the case of the non-dilute fiber volume fraction composite, the effective plastic strain distributions

have been generated at 200 °, 100 ° and 25 ° C, based on the macroscopic thermal response given in Fig.

4(bottom). These distributions are shown in Fig. 6. During the initial stages of yield initiation, the effective

plastic strain distribution predicted by the High-Fidelity Generalized Method of Cells at 200 ° C retains an

axisymmetric character and compares favorably with the multiple concentric cylinder model prediction. The

interaction with adjacent fibers becomes apparent at the lower temperatures as the magnitude of the effective

plastic strain predicted by the high-fidelity model within the plastic zone increases, losing its axisymmetric

character away from the fiber. In the immediate vicinity of the fiber/matrix interface, however, the axisym-

metric character of the effective plastic strain distribution is preserved and compares very well in magnitude
with the multiple concentric model prediction.
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Figure 4. Macroscopic thermal response of a unidirectional gr/al composite during spatially uniform cooldown

from 500 ° C to 25 ° C: (top) v/ - 0.05; (bottom) vf - 0.25. (Note that for vf - 0.05, an altered matrix
yield stress, oy - 286.67/4 MPa was employed, see Table 2).
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Figure 5. Effective plastic strain distributions in the aluminum phase of a unidirectional gr/al composite with

vf - 0.05, cooled from 500 ° C, at 300 ° C (top), 200 ° C (middle), and 25 ° C (bottom). Comparison of the

High-Fidelity Generalized Method of Cells predictions (left column) with the multiple concentric cylinder
results (right column).
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Figure 6. Effective plastic strain distributions in the aluminum phase of a unidirectional gr/al composite with

vf - 0.25, cooled from 500 ° C, at 200 ° C (top), 100 ° C (middle), and 25° C (bottom). Comparison of the

High-Fidelity Generalized Method of Cells predictions (left column) with the multiple concentric cylinder
results (right column).
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3.2 Axial shear loading

In comparing the predictions of both models for the axial shear loading case in the Xl -- X3 plane (see Fig. 1),
the following features of the local stress fields should be kept in mind. For the dilute fiber volume fraction

composite in the elastic region, the Crl3 shear stress distribution in the fiber region obtained from the multiple
concentric cylinder model is uniform while the Crl2 shear stress is zero. The evolution of plastic deformation

in the matrix phase introduces slight nonuniformities in these distributions. This is also true in the non-dilute

case since this model does not account directly for the interaction due to adjacent fibers. Further, the cr13

shear stress distribution is symmetric with respect to the horizontal and vertical planes through the fiber's

center, while the cr12shear stress distribution is antisymmetric irrespective of the fiber volume fraction at all

loading levels. With the exception of the interaction effect due to adjacent fibers in the non-dilute case, the
above features of the local stress fields must be captured by the High-Fidelity Generalized Method of Cells.

We start by presenting the macroscopic shear stress-strain predictions of the two models due to shearing

by the applied average strain _13. These responses are given in Fig. 7 for both the dilute and non-dilute cases,

and form the basis for the microscopic stress and effective plastic strain distributions presented at different

applied shear strain levels in the subsequent figures. In generating the shear response, the properties of

the aluminum matrix given in Table 2 were employed while the fiber was assumed to be isotropic with the
shear modulus G - 137.7 GPa, following Williams and Pindera (1997). This produces a fiber/matrix shear

modulus ratio of approximately 5, which provides a greater property mismatch than that obtained using the
properties of the transversely isotropic graphite fiber given in Table 1.

In the case of the dilute fiber volume fraction composite, Fig. 7(top), the predictions of the High-Fidelity
Generalized Method of Cells and the multiple concentric cylinder model are identical in both the elastic

and elastoplastic region, with macroscopic yielding occuring around 613 -- 0.3%. Based on the observed

macroscopic response, the microscopic stress distributions are given at e13 - 0.1, 0.5, and 0.75%, while
the microscopic effective plastic strain distributions are given at _la - 0.3, 0.5, and 0.75%. The elastic

shear stress distributions at _13 - 0.1% are included because the character of the microscopic stress field is

affected by the growth of the plastic zone in the aluminum matrix even at low fiber volume fractions, unlike

the axisymmetric thermal loading case discussed in the previous section. In the case of the non-dilute fiber

volume fraction composite, Fig. 7(bottom), the predictions of the High-Fidelity Generalized Method of Cells

and the multiple concentric cylinder model are also identical in the elastic region, with macroscopic yielding

occuring around _13 - 0.225%. In the elastoplastic region, the macroscopic shear response predicted by

the High-Fidelity Generalized Method of Cell is slightly lower relative to the multiple concentric cylinder

model prediction, indicating that the interaction with adjacent fibers is becoming noticeable. Based on the

observed macroscopic response, the microscopic stress distributions are given at _13 - 0.1, 0.5, and 0.75%

as in the dilute case, while the microscopic effective plastic strain distributions are given at _la - 0.25, 0.5,
and 0.75%.

The microscopic shear stress Crl3 distributions predicted by the High-Fidelity Generalized Method of

Cells and the multiple concentric cylinder model for the dilute case are compared in Fig. 8 at the given

applied shear strain levels. Both the character and the magnitude of the local shear stress field is captured

with very good accuracy by the high-fidelity model in this dilute case, including the initially nearly uniform

shear stress distribution in the fiber and the highly nonuniform distribution in the matrix phase in the elastic

region, and the effect of matrix plasticity on these distributions with progressive loading. Of particular

significance is the symmetry of the crla field with respect to the horizontal and vertical planes through the
fiber's center during all stages of loading. The effect of plasticity on the character of the shear stress field

is also dramatic, and perhaps more apparent, in the case of the cr12 distributions presented in Fig. 9 due

to the antisymmetric character of the stress field with respect to the horizontal and vertical planes. In this

case, yielding of the matrix phase skews the O12 distributions away from the bisectors of the horizontal

and vertical axes through the fiber's center towards the vertical axis as observed in the middle and bottom
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portionsof Fig. 9. Thisphenomenonis very well captured by the High-Fidelity Generalized Method of

Cells, as is the perfect antisymmetry of the cr12 field with respect to the horizontal and vertical planes.

As in the preceding case, the magnitude of the cr12 field predicted by the high-fidelity model compares
very well with the multiple concentric cylinder model prediction at the three applied shear strain levels. It is

therefore not surprising that the effective plastic strain distributions predicted by the high-fidelity model also

compare very well with the multiple concentric cylinder model predictions both in character and magnitude,

as observed in Fig. 10. This is tree even during the early stages of yield initiation when the effective plastic
strain magnitudes are very small.

In the non-dilute case, the effect of adjacent fibers on the microscopic shear stress fields generated by

the High-Fidelity Generalized Method of Cells becomes apparent. The magnitude of this effect depends on
the particular shear stress component and the extent of plastic deformation. In the case of the shear stress

_r13 distributions shown in Fig. 11, the shear stress in the fiber is nearly uniform in the elastic region and

compares very well in magnitude with the multiple concentric cylinder model result (Fig. 1l(top)). The

matrix shear stress field is also well captured by the high-fidelity model. As the extent of the plastic zone

grows, the interaction with adjacent fibers becomes more apparent both in the fiber and the matrix phases.

Specifically, the high-fidelity model predicts greater extent of the fiber shear stress nonuniformity, and a

smaller shear stress gradient in the matrix phase in the plane of shearing, relative to the multiple concentric
cylinder results.

In the case of the shear stress cr12 distributions shown in Fig. 12, the shear stress in the fiber becomes

nonuniform already in the elastic region. However, the basic character and magnitude of the shear stress

field is essentially the same as that predicted by the multiple concentric cylinder model. As in the dilute

case, plastic deformation in the matrix phase skews the shear stress field away from the bisectors of the

horizontal and vertical axes through the fiber's center towards the vertical axis, albeit not to the same ex-

tent as in the dilute case and as predicted by the multiple concentric cylinder model. In general, in the

non-dilute case the overall character of the shear stress Crl2 distributions inthe elastoplastic region better
resembles the corresponding multiple concentric cylinder model predictions than does the character of the
cr13 distributions.

The influence of adjacent fibers in the periodic array model employed by the High-Fidelity Generalized

Method of Cells is also apparent in the effective plastic strain distributions shown in Fig. 13 for the non-

dilute case. During the initial stages of yielding, this influence is not noticeable (Fig. 13(top)), but increases

at the higher levels of deformation (Fig. 13(middle and bottom)). Specifically, the constraint due to the

adjacent fibers retards the growth of the plastic zone in the matrix phase in the direction normal to the

plane of sheafing, and enhances it in the shearing plane itself. In the immediate vicinity of the fiber/matrix

interface, however, both the character and magnitude of the effective plastic strain field predicted by the

high-fidelity model compare very well with the multiple concentric cylinder model prediction.
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Generalized Method of Cells predictions with the multiple concentric cylinder model results. (Note that in
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Figure 8. Shear stress o'13 distributions in the individual phases of a unidirectional gr/al composite with

v I - 0.05 at the applied average shear strain _13 of 0.1% (top), 0.5% (middle), and 0.75% (bottom).

Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple

concemric cylinder results (right column). Colorbar in MPa. (Note that the dot at the fiber's center is a

plotting artifact).
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Figure 9. Shear stress o12 distributions in the individual phases of a unidirectional gr/al composite with

v I - 0.05 at the applied average shear strain _13 of 0.1% (top), 0.5% (middle), and 0.75% (bottom).

Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple
concentric cylinder results (right column). Colorbar in MPa.
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Figure 10. Effective plastic strain distributions in the aluminum phase of a unidirectional gr/al composite

with v I - 0.05 at the applied average shear strain _13 of 0.3% (top), 0.5% (middle), and 0.75% (bottom).

Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple
concentric cylinder results (right column).
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Figure 11. Shear stress _13 distributions in the individual phases of a unidirectional gr/al composite with

vf - 0.25 at the applied average shear strain _13 of 0.1% (top), 0.5% (middle), and 0.75% (bottom).

Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple
concentric cylinder results (right column). Colorbar in MPa. (Note that the dot at the fiber's center is a
plotting artifact).
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Figure 12. Shear stress Crl2 distributions in the individual phases of a unidirectional gr/al composite with

vf - 0.25 at the applied average shear strain _13 of 0.1% (top), 0.5% (middle), and 0.75% (bottom).

Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple

concentric cylinder results (right column). Colorbar in MPa.
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Figure 13. Effective plastic strain distributions in the aluminum phase of a unidirectional gr/al composite

with vf - 0.25 at the applied average shear strain _13 of 0.3% (top), 0.5% (middle), and 0.75% (bottom).

Comparison of the High-Fidelity Generalized Method of Cells predictions (left column) with the multiple

concentric cylinder results (right column).
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3.3 Transverse normal loading

The commercial finite-element program ANSYS was employed to generate the response of the gr/al unidi-

rectional composite under transverse loading. Refined representations of the repeating unit cell containing
1,782 elements with 4,989 nodes for the dilute case, and 1,260 elements with 3,909 nodes for the non-dilute

case, were constructed using 8-noded, plane-strain quadrilateral elements. External loading was specified
in the form of uniform displacements of opposite signs but equal magnitudes applied to the horizontal and

vertical boundaries of the unit cell under the condition of plane strain in the out-of-plane direction. This

type of loading represents pure shearing in the coordinate system rotated by 45 ° about the fiber's center,

and provides a critical test of the High-Fidelity Generalized Method of Cells' predictive capabilities under

transverse loading. In the context of the finite-element analysis, it also eliminates the need for an iterative

solution procedure when transverse loading is applied in just one direction in order to ensure that the average

stress in the other direction remains zero. The same loading was employed to generate the High-Fidelity
Generalized Method of Cells results (i.e., g22 -- -_ with ell -- 0).

For this loading case, the actual properties of the transversely isotropic graphite fiber were employed in

the calculations. Therefore, the matrix is 3.58 times stiffer than the fiber in the loading plane (see Tables 1

and 2), in contrast with the axial shearing case where the fiber was approximately 5 times stiffer than the

matrix in the plane of sheafing. The smaller transverse stiffness of the fiber relative to the matrix in the

present case is expected to produce substantially different trends than those observed in the axial sheafing

case both at the macroscopic and microscopic scales, providing a completely different test for the High-
Fidelity Generalized Method of Cells' predictive capability. This is indeed the case as demonstrated first

in Fig. 14 which provides the comparison between the high-fidelity model and finite-element predictions

of the macroscopic stress-strain response for the two fiber volume fraction composites. Specifically, the

stress-strain response for the non-dilute case is lower relative to the dilut e case. Further, there is virtually no
difference between the predictions of the two models for the two cases.

Included in Fig. 14 are the corresponding predictions of the original Generalized Method of Cells for the

two fiber fraction cases. As observed, the initial elastic response is very well captured by the Generalized

Method of Cells despite the inherent absence of shear coupling in this simpler micromechanical model. The

predictive capability of this model is also quite good in the elastoplastic region, but does depend on the fiber

volume fraction as expected. The reason for the original Generalized Method of Cells' ability to model the

macroscopic inelastic response of metal matrix composites with good accuracy will become apparent upon
examination of the internal stress fields.

Based on the macroscopic stress-strain curves, local field quantities were generated at the applied g33

strain levels of 0.4 and 1.0%. Figure 15 shows the effective plastic strain distributions generated by the

High-Fidelity Generalized Method of Cells which can be compared with the corresponding distributions

generated by the finite-element model given in Fig. 16. As observed, both the magnitudes and the character

of the distributions are virtually the same at the two strain levels. In particular, for the dilute case, initiation

of yielding at the fiber/matrix interface at locations coincident with the loading axes is correctly captured by

the high-fidelity model, as is the spread of the plastic zone at the final macroscopic strain. Yielding in the

non-dilute case initiates halfway between adjacent fibers along the line rotated 45 ° about the fiber's center,

in contrast with the dilute case. This too is captured by the high-fidelity model with excellent accuracy, as
is the effective plastic strain distribution at the final macroscopic strain.

In order to highlight the differences between the High-Fidelity Generalized Method of Cells and the

original Generalized Method of Cells, Fig. 17 illustrates the inplane shear stress _r23 distributions generated

using the high-fidelity model at the same applied _ strain levels as those presented in Fig 16. Clearly, the

magnitude of the inplane shear stress is significant and cannot be neglected. The corresponding distributions

obtained from the finite-element analysis are shown in Fig. 18. Comparison of the two sets of predictions

reaffirms the predictive capability of the high-fidelity model. In stark contrast, the original Generalized
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Methodof Cellspredictsthatthe inplaneshearstressdistributionsareidenticallyzero,whichis a direct
consequenceoftheabsenceof shearcoupling.Apparently,theabsenceof shearcoupling,whileresultingin
poorpredictionoflocaldistributionsof certainstresscomponents,haslittleeffectonthemethod'sabilityto
accuratelycapturethemacroscopicbehavior.

In orderto explaintheoriginalGeneralizedMethodof Cells'capabilityto capturethemacroscopic
responseof metalmatrixcompositesin theinelasticregionwithgoodaccuracy,it isneccessaryto examine
thosestressdistributionsthataredirectlyresponsiblefortheinelasticbehavior.In thecaseof theclassical
incrementalplasticitytheoryemployedherein,it is necessaryto examinetheeffectivestressdistributions.
Theseareillustratedin Figs. 19,20,and21for thetwo fiberfractioncasesgeneratedatthesameapplied
macroscopicstrainlevelsasaboveusingtheHigh-FidelityGeneralizedMethodof Cells,finite-element
analysis,andtheoriginalGeneralizedMethodof Cells,respectively.Comparisonof Figs.19and20leads
to thesameconclusionsregardingthepredictivecapabilityof thehigh-fidelitymodelasthecomparison
of theeffectiveplasticstraindistributionsshownin Figs. 15and16.Examinationof theeffectivestress
distributionsgeneratedusingtheoriginalGeneralizedMethodofCells,Fig.21,leadstotheconclusionthat
theessentialfeaturesof thesedistributionsaregenerallythesameasthoseobtainedfromthehigh-fidelity
modelandthefinite-elementanalysis,Figs.19and20,eventhoughthelocaldetailsdiffersomewhat.This
explainstheoriginalGeneralizedmethodofCells'abilitytomodeltheelastoplasticresponseofmetalmatrix
compositeswithsufficientaccuracy.

Finally,Figs.22,23,and24presentthecorrespondinghydrostaticstressdistributionsgeneratedusing
theHigh-FidelityGeneralizedMethodofCells,finite-elementanalysis,andtheoriginalGeneralizedMethod
of Cells,respectively.As in theprecedingcases,comparisonof Figs. 22and23 indicatesthatthehigh-
fidelitymodelcapturesboththemagnitudeandlocaldistributionsof thehydrostaticstresswithverygood
accuracyrelativeto thefinite-elementpredictions.In contrast,theaccuracywithwhichthesedistributions
arecapturedbytheoriginalGeneralizedMethodof Cellsis quitepoor.It is onlyin agrossaveragesense
thatthesedistributionsareaccurateoverlargeareasof therepeatingunit cell,precludingthepossibilityof
accuratelymodelinglocalmatrixdegradationorfailureduetothehydrostaticstresscomponent.
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Figure 14. Macroscopic transverse stress-strain response, _33 vs _33, of a unidirectional gr/al composite

due to loading in the z2 - z3 plane by _22 - -_33 with _11 - 0" (top) v/ - 0.05; (bottom) vf - 0.25.

Comparison of the High-Fidelity Generalized Method of Cells predictions with the results from the finite-

element analysis and the original General Method of Cells.
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Figure 19. Effective stress distributions in the individual phases a unidirectional gr/al composite at the

applied average transverse strain _33 of 0.4% (left column) and 1.0% (right column) obtained from the

High-Fidelity Generalized Method of Cells" (top) v I - 0.05; (bottom) v I - 0.25.
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Figure 23. Hydrostatic stress distributions in the individual phases a unidirectional gr/al composite at the

applied average transverse strain _a3 of 0.4% (left column) and 1.0% (right column) obtained from the

finite-element analysis: (top) v I - 0.05; (bottom) vf - 0.25.
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4 Summary and Conclusions

A recently developed theory for periodic multiphase materials, called High-Fidelity Generalized Method

of Cells, which was previously limited to thermoelastic phases has been extended herein to admit inelastic

constitutive behavior of the individual phases. This extension has been carried out in a general fashion in

order to enable the use of different constitutive models for the phase behavior, including classical incre-

mental plasticity theory, creep models, as well as various unified viscoplasticity theories. The theoretical

framework combines elements of the homogenization technique with the higher-order theory for function-

ally graded materials developed previously by the authors. These features provide a basis for consistent

approximation of the displacement field at the local level together with consistent application of periodic
boundary conditions imposed on the deformation of the repeating unit cell, which characterizes the mater-

ial's microstructure. Further, the higher-order displacement field approximation at the local level employed

in the present approach provides the necessary coupling between the local normal and inplane shear stress

fields and the macroscopically applied loading. This coupling dramatically improves the accuracy of esti-
mating the local stress and inelastic strain fields relative to the original Generalized Method of Cells which

is based on a first-order displacement approximation at the local level. The high-fidelity model's predictive
capability to capture both the macroscopic response and the local stress and inelastic strain fields has been

demonstrated through comparison with the results of two analytical solutions and finite-element element

analysis of the inelastic response of a unidirectional gr/al composite, based on the incremental plasticity
theory, subjected to different types of loading.

The primary result of the High-Fidelity Generalized Method of Cells is the closed-form constitutive

equation for the macroscopic thermoinelastic response of multiphase materials, subjected to arbitrary mul-

tiaxial macroscopic thermomechanical loading, which possess microstructures characterized by repeating
unit cells with arbitrary reinforcement distributions. This is a direct result of the use of periodic bound-

ary conditions that follow from the homogenization approach's framework. Thus the macroscopic inelastic

response can be generated irrespective of whether or not a repeating unit cell possesses planes of mater-
ial symmetry. This can be done easily for any combination of macroscopically applied thermomechanical

loads, in contrast with the standard finite-element analyses of periodic composites. The repeating unit cell's

construction is simple due to the employed volume discretization that produces a rectangular grid whose

subcells are appropriately assigned different material properties and dimensions so as to mimic a multiphase

material's actual microstructure. Further, the computational speed with which the macroscopic inelastic

response and local stress and plastic strain fields are generated is sufficiently fast (typically on the order of

a few minutes on the DEC-Alpha DS20E 6/667 machine for the investigated cases) for reasonably detailed

volume discretizations of a repeating unit cell. These features of the presented theory facilitate investiga-

tions of the impact of different materials architectures on both the macroscopic and local responses, taking

into account inelastic phase behavior, in an efficient and accurate manner. They also make it straightforward
to incorporate the theory into a structural analysis computer code as a subroutine.
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Appendix: Multiple Concentric Cylinder Model

A brief outline of the solutions for the displacement field, from which the corresponding stress field can

be generated, in a unidirectional elastoplastic composite subjected to axisymmetric and axial shear loading

is given in this section based on the multiple concentric cylinder model. The solutions are fully analytical

and therefore provide a good basis for comparison with the predictions of the outlined higher-order theory

despite the differences in the model geometries. The cylindrical coordinate system x-r-O (where x denotes

the direction along the cylinder's axis) is used to formulate the problem and solve for the displacement and

stress fields in a multilayered cylinder consisting of an elastic core and an arbitrary number of fully bonded

inelastic concentric shells. The elastic core is denoted by the superscript 1 and the outermost cylindrical

shell by n. The inner radius of the kth shell is denoted by rk-1 and the outer radius by rk.

Axisymmetric loading

Under axisymmetric loading that may involve a combination of a macroscopically uniform axial stress

or strain, uniform temperature field and biaxial tension/compression, the displacement field in the individual

layers of a multiple concentric cylinder has the following form

0

where e_° is the uniform axial strain component. Therefore, the equilibrium equations in the individual

layers expressed in terms of displacements reduce to the single ordinary differential equation

1 1 - +
dr2 _ =- (A2)

i_x ;O.r i_a: ;O. r

where e i_
"ii (r) are the inelastic strain distributions that depend implicitly on the radial displacement field

u_(r), and Cia (i, j - x, 0, r) terms are the components of the elastic stiffness matrix expressed in the

cylindrical coordinate system. For the elastic core, the fight hand side of the above equation becomes

zero. In the present situation, we consider thermal loading due to a spatially uniform temperature change.

Therefore, the solution to the above equation in each layer of the composite cylinder is obtained subject to
the boundary conditions

n (r,_) -- 0 (13)(Yrr

the interracial displacement and traction continuity conditions

k--1 k
k--1 k(rk--1) O'rr -- (rk--1) (14)- ,

where k -- 2, ..., n, and the axial equilibrium condition for the entire multiple concentric cylinder assem-
blage

fa a_x dA¢ -- 0 (A5)
c

where A_ is the cross-sectional area of the assemblage.

Using standard techniques, the solution of the equilibrium equation in each layer is obtained in the form

A2 1 f_" (C_i +Coi)

Air + _ + J_k E i_, ')r'dr'
eii (r +

r _r _- 1 i--x_O_r

-F (C_i Co_) i_ dr' 1 C_i 2-- rk_ 1

r J_ _ C_r zii (r')-7- + -2 E _rr e_(rk-')r ( r 2
2 _-1 i--x,O_r i--x;O_r

1) (A6)
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whererk-1 < r < rk. The unknown coefficients A1, A2, axial strain e° and inelastic strain distributions
XX_

in the core and the kth shell are obtained at each increment along the imposed thermal loading path by

following the solution procedure outlined by Pindera et al. (1993). The imposed spatially uniform thermal

loading appears in the solution procedure through the application of the interfacial traction continuity and

external boundary conditions upon expressing tractions in terms of strains (and thus the displacement field)
using Hooke's law.

Axial shear loading

Under axial shear loading by homogeneous displacements or tractions that produce a uniform axial shear

strain in an equivalent homogenized medium, the displacement field takes the following form, referred to
the coordinate system of Fig. A 1,

uz(r,O) -- O(r,O) - e°2r cos0, u_(x,O) -- e°2x cos 0, uo(x,O) -- -e°2xsinO (A7)

where e°2 is the uniform shear strain in an equivalent homogenized medium generated by homogeneous

displacement or traction boundary conditions in the horizontal plane. The function O(r, O) represents the

deviation in the axial shear deformation of a layer from the solution for the equivalent homogenized material

with homogeneous properties and, in the presence of inelastic effects, depends implicitly on the inelastic

strain field. Therefore, the equilibrium equations in the individual layers expressed in terms of displacements

result in the following partial differential equation for the unknown function ¢(r, O) in each layer

O0 ) 1 0 2 ¢ 1 0 (rz_) 10s_1 o (_ +---'- =- _ - _(_,o) (AS)
r Or -_r r 2 O02 r Or r O0 --

The solution to the above equation is obtained subject to the homogeneous displacement boundary condi-
tions imposed on the surface of the nth shell

u_(r,O) -- z°2beosO, u_(x,O) -- e°2x cos0, uo(x,O) -- -Z°zxsbaO (A9)

where b is the outer radius of the entire cylindrical assemblage, and the interfacial displacement and traction

continuity conditions. For the above displacement field representation, these reduce to

k-_. 0) k k-1u_ (rk--1, -- u_(rk_l, 0), _r_ (rk-1,0)- _r_.k(rk_l, 0) (Aa0)

since the continuity of the radial and tangential displacement components u_(x, O) and uo (x, O) is identically
satisfied, and the traction components o'r_. and _rr0 vanish.

The solution to the partial differential equation governing the function 0(r, 0) is obtained in the form

OO

a 1 _R_ (_) co__0
,(r,O) -- _Tio(r) + -_ (All)

n=l

where

for n = O, and

P_(_) - [F_o+ _fo(_)d_] 1. _ + F2o - _h _fo (_)
_--1 _--1

(A12)

P_(r) --[FI_ + _1 _-_ s-_+l f_(s)ds]r_ + [F2,_- _ .-, s_+l fi_(s) ds]r-n (A13)

for n > 0. The functions f_ (r) are the coefficients of the Fourier series representation of e(r, 0). They are
given by

fn(r) -- --_ e(r, O) cos nO dO (a14)
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TheunknowncoefficientsFI,_ and F2,_ appearing in the solution for O(r, O) in each layer are obtained by

applying the interfacial displacement and traction continuity conditions, external boundary conditions, and

employing an iterative solution procedure at each load increment in the manner described by Williams and

Pindera (1997). Convergent solutions in the presence of inelastic effects are typically obtained with 25 - 30
harmonics in the Fourier series representation of O(r, 0).

EQU |VA LE NT HOM OG EN IZED M ED|UM

Displacement bc's for

homogeneous sheadng
in the ×._x_ plane

.O .
U2_ E;_X_

Corresponding
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cylinder

tl_ = e,_2bcose

• X,,

• _ :!_!_
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Figure A1. Boundary conditions for the multiple concentric cylinder model subjected to axial shearing in
the x_ - x_ plane.
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